Useful Tables (Taylor & Maclaurin Series)

Negative 1 Exponentiated Imaginary Numbers Exponentiated
{ \left( -1 \right)  }^{ 0 }=1 \sqrt { -1 } =i
{ \left( -1 \right)  }^{ 1 }=-1 i\cdot i={ i }^{ 2 }=-1
{ \left( -1 \right)  }^{ 2 }=1 { i }^{ 3 }={ i }^{ 2 }\cdot i=-i
{ \left( -1 \right)  }^{ 3 }=-1 { i }^{ 4 }={ i }^{ 3 }\cdot i=-i\cdot i=-{ i }^{ 2 }=1
{ \left( -1 \right)  }^{ 4 }=1 { i }^{ 5 }={ i }^{ 4 }\cdot i=i
{ \left( -1 \right)  }^{ 5 }=-1 { i }^{ 6 }={ i }^{ 5 }\cdot i=i\cdot i={ i }^{ 2 }=-1
{ \left( -1 \right)  }^{ 6 }=1 { i }^{ 7 }={ i }^{ 6 }\cdot i=-i
{ \left( -1 \right)  }^{ 7 }=-1 { i }^{ 8 }={ i }^{ 7 }\cdot i=-i\cdot i=-{ i }^{ 2 }=1
{ \left( -1 \right)  }^{ 8 }=1 { i }^{ 9 }={ i }^{ 8 }\cdot i=i
{ \left( -1 \right)  }^{ 9 }=-1 { i }^{ 10 }={ i }^{ 9 }\cdot i={ i }^{ 2 }=-1
{ \left( -1 \right)  }^{ 10 }=1 { i }^{ 11 }={ i }^{ 10 }\cdot i=-i
summation (06)
summation (05)
summation (03)
summation (04)
Summation (01)
summation (02)

GCSE + A Level Mathematics Proofs, Videos and Tutorials.