Tag Archives: roots

Another way to express the golden ratio mathematically

In this post I’m going to be proving that…

\varphi =\frac { 1+\sqrt { 5 } }{ 2 } =1+\frac { 1 }{ 1+\frac { 1 }{ 1+\frac { 1 }{ 1+... } } }

So, here I go…

x=\frac { 1+\sqrt { 5 } }{ 2 } \\ \\ \Rightarrow \quad { x }^{ 2 }=\frac { \left( 1+\sqrt { 5 } \right) }{ 2 } \cdot \frac { \left( 1+\sqrt { 5 } \right) }{ 2 } \\ \\ \Rightarrow \quad { x }^{ 2 }=\frac { 1+2\sqrt { 5 } +5 }{ 4 } \\ \\ \Rightarrow \quad { x }^{ 2 }=\frac { 6+2\sqrt { 5 } }{ 4 } \\ \\ \Rightarrow \quad { x }^{ 2 }-1=\frac { 6+2\sqrt { 5 } }{ 4 } -\frac { 4 }{ 4 } \\ \\ \Rightarrow \quad { x }^{ 2 }-1=\frac { 2+2\sqrt { 5 } }{ 4 } \\ \\ \Rightarrow \quad { x }^{ 2 }-1=\frac { 2 }{ 2 } \cdot \frac { \left( 1+\sqrt { 5 } \right) }{ 2 }

Wait for it…

\Rightarrow \quad { x }^{ 2 }-1=1\cdot x\\ \\ \Rightarrow \quad { x }^{ 2 }-1=x\\ \\ \Rightarrow \quad { x }^{ 2 }=x+1\\ \\ \Rightarrow \quad \frac { { x }^{ 2 } }{ x } =\frac { x }{ x } +\frac { 1 }{ x } \\ \\ \Rightarrow \quad x=1+\frac { 1 }{ x } \\ \\ \Rightarrow \quad \frac { 1+\sqrt { 5 } }{ 2 } =1+\frac { 1 }{ x } \\ \\ \Rightarrow \quad \frac { 1+\sqrt { 5 } }{ 2 } =1+\frac { 1 }{ \left( 1+\frac { 1 }{ x } \right) } \\ \\ \Rightarrow \quad \frac { 1+\sqrt { 5 } }{ 2 } =1+\frac { 1 }{ 1+\frac { 1 }{ x } } \\ \\ \Rightarrow \quad \frac { 1+\sqrt { 5 } }{ 2 } =1+\frac { 1 }{ 1+\frac { 1 }{ \left( 1+\frac { 1 }{ x } \right) } } \\ \\ \therefore \quad \frac { 1+\sqrt { 5 } }{ 2 } =1+\frac { 1 }{ 1+\frac { 1 }{ 1+\frac { 1 }{ 1+... } } }

This expression for the golden ratio is quite common, however, before I produced this post – I think it would’ve been very hard to figure out how to derive it from scratch. There aren’t many quirky proofs like this one on the internet – I am quite certain. I hope you liked reading this post! 😀