# |z_1|/|z_2|=|z_1/z_2| proof (algebraic)

In this post I’ll be proving to you that:

$\frac { \left| { z }_{ 1 } \right| }{ \left| { z }_{ 2 } \right| } =\left| \frac { { z }_{ 1 } }{ { z }_{ 2 } } \right|$

Firstly, I’ll say that:

${ z }_{ 1 }=x+iy,\quad \therefore \quad \left| { z }_{ 1 } \right| =\sqrt { { x }^{ 2 }+{ y }^{ 2 } }$

And also that:

${ z }_{ 2 }=p+iq,\quad \therefore \quad \left| { z }_{ 2 } \right| =\sqrt { { p }^{ 2 }+{ q }^{ 2 } }$

If this is the case, then:

$\frac { { z }_{ 1 } }{ { z }_{ 2 } } =\frac { x+iy }{ p+iq } \\ \\ =\frac { \left( x+iy \right) }{ \left( p+iq \right) } \cdot \frac { \left( p-iq \right) }{ \left( p-iq \right) } \\ \\ =\frac { px-iqx+ipy-{ i }^{ 2 }qy }{ { p }^{ 2 }-ipq+ipq-{ i }^{ 2 }{ q }^{ 2 } } \\ \\ =\frac { \left( px+qy \right) +i\left( py-qx \right) }{ { p }^{ 2 }+{ q }^{ 2 } } \\ \\ =\left( \frac { px+qy }{ { p }^{ 2 }+{ q }^{ 2 } } \right) +i\left( \frac { py-qx }{ { p }^{ 2 }+{ q }^{ 2 } } \right)$

And as this is in the form:

$z=a+ib$

I would have to conclude that:

$RHS=\left| \frac { { z }_{ 1 } }{ { z }_{ 2 } } \right| \\ \\ =\sqrt { { \left( \frac { px+qy }{ { p }^{ 2 }+{ q }^{ 2 } } \right) }^{ 2 }+{ \left( \frac { py-qx }{ { p }^{ 2 }+{ q }^{ 2 } } \right) }^{ 2 } } \\ \\ =\sqrt { \frac { { \left( px+qy \right) }^{ 2 } }{ { \left( { p }^{ 2 }+{ q }^{ 2 } \right) }^{ 2 } } +\frac { { \left( py-qx \right) }^{ 2 } }{ { \left( { p }^{ 2 }+{ q }^{ 2 } \right) }^{ 2 } } } \\ \\ =\sqrt { \frac { { \left( px+qy \right) }^{ 2 }+{ \left( py-qx \right) }^{ 2 } }{ \left( { p }^{ 2 }+{ q }^{ 2 } \right) ^{ 2 } } } \\ \\ =\sqrt { \frac { { p }^{ 2 }{ x }^{ 2 }+2pqxy+{ q }^{ 2 }{ y }^{ 2 }+{ p }^{ 2 }{ y }^{ 2 }-2pqxy+{ q }^{ 2 }{ x }^{ 2 } }{ { \left( { p }^{ 2 }+{ q }^{ 2 } \right) }^{ 2 } } } \\ \\ =\sqrt { \frac { { p }^{ 2 }{ x }^{ 2 }+{ q }^{ 2 }{ x }^{ 2 }+{ p }^{ 2 }{ y }^{ 2 }+{ q }^{ 2 }{ y }^{ 2 } }{ { \left( { p }^{ 2 }+{ q }^{ 2 } \right) }^{ 2 } } } \\ \\ =\sqrt { \frac { \left( { x }^{ 2 }+{ y }^{ 2 } \right) \left( { p }^{ 2 }+{ q }^{ 2 } \right) }{ \left( { p }^{ 2 }+{ q }^{ 2 } \right) \left( { p }^{ 2 }+{ q }^{ 2 } \right) } } \\ \\ =\sqrt { \frac { { x }^{ 2 }+{ y }^{ 2 } }{ { p }^{ 2 }+{ q }^{ 2 } } } \\ \\ =\frac { \sqrt { { x }^{ 2 }+{ y }^{ 2 } } }{ \sqrt { { p }^{ 2 }+{ q }^{ 2 } } } \\ \\ =\frac { \left| { z }_{ 1 } \right| }{ \left| { z }_{ 2 } \right| } =LHS$

Hence, I have my proof.

# Another way to express the golden ratio mathematically

In this post I’m going to be proving that…

$\varphi =\frac { 1+\sqrt { 5 } }{ 2 } =1+\frac { 1 }{ 1+\frac { 1 }{ 1+\frac { 1 }{ 1+... } } }$

So, here I go…

$x=\frac { 1+\sqrt { 5 } }{ 2 } \\ \\ \Rightarrow \quad { x }^{ 2 }=\frac { \left( 1+\sqrt { 5 } \right) }{ 2 } \cdot \frac { \left( 1+\sqrt { 5 } \right) }{ 2 } \\ \\ \Rightarrow \quad { x }^{ 2 }=\frac { 1+2\sqrt { 5 } +5 }{ 4 } \\ \\ \Rightarrow \quad { x }^{ 2 }=\frac { 6+2\sqrt { 5 } }{ 4 } \\ \\ \Rightarrow \quad { x }^{ 2 }-1=\frac { 6+2\sqrt { 5 } }{ 4 } -\frac { 4 }{ 4 } \\ \\ \Rightarrow \quad { x }^{ 2 }-1=\frac { 2+2\sqrt { 5 } }{ 4 } \\ \\ \Rightarrow \quad { x }^{ 2 }-1=\frac { 2 }{ 2 } \cdot \frac { \left( 1+\sqrt { 5 } \right) }{ 2 }$

Wait for it…

$\Rightarrow \quad { x }^{ 2 }-1=1\cdot x\\ \\ \Rightarrow \quad { x }^{ 2 }-1=x\\ \\ \Rightarrow \quad { x }^{ 2 }=x+1\\ \\ \Rightarrow \quad \frac { { x }^{ 2 } }{ x } =\frac { x }{ x } +\frac { 1 }{ x } \\ \\ \Rightarrow \quad x=1+\frac { 1 }{ x } \\ \\ \Rightarrow \quad \frac { 1+\sqrt { 5 } }{ 2 } =1+\frac { 1 }{ x } \\ \\ \Rightarrow \quad \frac { 1+\sqrt { 5 } }{ 2 } =1+\frac { 1 }{ \left( 1+\frac { 1 }{ x } \right) } \\ \\ \Rightarrow \quad \frac { 1+\sqrt { 5 } }{ 2 } =1+\frac { 1 }{ 1+\frac { 1 }{ x } } \\ \\ \Rightarrow \quad \frac { 1+\sqrt { 5 } }{ 2 } =1+\frac { 1 }{ 1+\frac { 1 }{ \left( 1+\frac { 1 }{ x } \right) } } \\ \\ \therefore \quad \frac { 1+\sqrt { 5 } }{ 2 } =1+\frac { 1 }{ 1+\frac { 1 }{ 1+\frac { 1 }{ 1+... } } }$

This expression for the golden ratio is quite common, however, before I produced this post – I think it would’ve been very hard to figure out how to derive it from scratch. There aren’t many quirky proofs like this one on the internet – I am quite certain. I hope you liked reading this post! ðŸ˜€

# Completing The Square (Why It Works)

Prove that:

${ \left( x-\frac { b }{ 2 } \right) }^{ 2 }-{ \left( \frac { b }{ 2 } \right) }^{ 2 }={ x }^{ 2 }-bx$

Proof:

${ \left( x-\frac { b }{ 2 } \right) }^{ 2 }-{ \left( \frac { b }{ 2 } \right) }^{ 2 }\\ \\ =\left( x-\frac { b }{ 2 } \right) \left( x-\frac { b }{ 2 } \right) -\frac { { b }^{ 2 } }{ 4 } \\ \\ ={ x }^{ 2 }-2x\frac { b }{ 2 } +\frac { { b }^{ 2 } }{ 4 } -\frac { { b }^{ 2 } }{ 4 } \\ \\ ={ x }^{ 2 }-bx$

Second Proof:

$As:\\ \\ { p }^{ 2 }-{ q }^{ 2 }=\left( p+q \right) \left( p-q \right) \\ \\ And:\\ \\ p=\left( x-\frac { b }{ 2 } \right) \\ \\ And:\\ \\ q=\frac { b }{ 2 } ,\\ \\ { \left( x-\frac { b }{ 2 } \right) }^{ 2 }-{ \left( \frac { b }{ 2 } \right) }^{ 2 }\\ \\ =\left( x-\frac { b }{ 2 } +\frac { b }{ 2 } \right) \left( x-\frac { b }{ 2 } -\frac { b }{ 2 } \right) \\ \\ =x\left( x-2\frac { b }{ 2 } \right) \\ \\ =x\left( x-b \right) \\ \\ ={ x }^{ 2 }-bx$

Prove that:

${ \left( x+\frac { b }{ 2 } \right) }^{ 2 }-{ \left( \frac { b }{ 2 } \right) }^{ 2 }={ x }^{ 2 }+bx$

Proof:

${ \left( x+\frac { b }{ 2 } \right) }^{ 2 }-{ \left( \frac { b }{ 2 } \right) }^{ 2 }\\ \\ =\left( x+\frac { b }{ 2 } \right) \left( x+\frac { b }{ 2 } \right) -\frac { { b }^{ 2 } }{ 4 } \\ \\ ={ x }^{ 2 }+2x\frac { b }{ 2 } +\frac { { b }^{ 2 } }{ 4 } -\frac { { b }^{ 2 } }{ 4 } \\ \\ ={ x }^{ 2 }+bx$

Second Proof:

$As:\\ \\ { p }^{ 2 }-{ q }^{ 2 }=\left( p+q \right) \left( p-q \right) \\ \\ And:\\ \\ p=\left( x+\frac { b }{ 2 } \right) \\ \\ And:\\ \\ q=\frac { b }{ 2 } ,\\ \\ { \left( x+\frac { b }{ 2 } \right) }^{ 2 }-{ \left( \frac { b }{ 2 } \right) }^{ 2 }\\ \\ =\left( x+\frac { b }{ 2 } +\frac { b }{ 2 } \right) \left( x+\frac { b }{ 2 } -\frac { b }{ 2 } \right) \\ \\ =\left( x+2\frac { b }{ 2 } \right) x\\ \\ =x\left( x+b \right) \\ \\ ={ x }^{ 2 }+bx$

# How To Derive The Quadratic Formula

$a{ x }^{ 2 }+bx+c=0\\ \\ a{ x }^{ 2 }+bx=-c\\ \\ { x }^{ 2 }+\frac { b }{ a } x=-\frac { c }{ a } \\ \\ { \left( x+\frac { b }{ 2a } \right) }^{ 2 }-{ \left( \frac { b }{ 2a } \right) }^{ 2 }=-\frac { c }{ a } \\ \\ { \left( x+\frac { b }{ 2a } \right) }^{ 2 }-\frac { { b }^{ 2 } }{ 4{ a }^{ 2 } } =-\frac { c }{ a } \\ \\ { \left( x+\frac { b }{ 2a } \right) }^{ 2 }=\frac { { b }^{ 2 } }{ 4{ a }^{ 2 } } -\frac { c }{ a } \\ \\ { \left( x+\frac { b }{ 2a } \right) }^{ 2 }=\frac { { b }^{ 2 } }{ 4{ a }^{ 2 } } -\frac { 4ac }{ 4{ a }^{ 2 } } \\ \\ { \left( x+\frac { b }{ 2a } \right) }^{ 2 }=\frac { { b }^{ 2 }-4ac }{ 4{ a }^{ 2 } } \\ \\ x+\frac { b }{ 2a } =\pm \frac { \sqrt { { b }^{ 2 }-4ac } }{ \sqrt { 4 } \sqrt { { a }^{ 2 } } } =\pm \frac { \sqrt { { b }^{ 2 }-4ac } }{ 2a } \\ \\ x=-\frac { b }{ 2a } \pm \frac { \sqrt { { b }^{ 2 }-4ac } }{ 2a } \\ \\ x=\frac { -b\pm \sqrt { { b }^{ 2 }-4ac } }{ 2a }$

— USEFUL FORMULAS:

$\frac { a }{ c } \pm \frac { b }{ c } =\frac { a\pm b }{ c } \\ \\ \frac { a }{ b } \pm \frac { c }{ d } =\frac { ad }{ bd } \pm \frac { bc }{ bd } =\frac { ad\pm bc }{ bd } \\ \\ \sqrt { { a }^{ 2 } } ={ a }^{ \frac { 2 }{ 2 } }=a\\ \\ \sqrt { a } \sqrt { b } =\sqrt { ab } \\ \\ \frac { \sqrt { a } }{ \sqrt { b } } =\sqrt { \frac { a }{ b } }$