**Coded Data Proofs (3):**

Say y=kx+C and also that:

x={p, q} and y={kp+C, kq+C}

This would mean that:

And if the above is true:

Therefore:

**Coded Data Proofs (3):**

Say y=kx+C and also that:

x={p, q} and y={kp+C, kq+C}

This would mean that:

And if the above is true:

Therefore:

**Coded Data Poofs (2):**

Say y=x/k and that: x={p, q}, y={p/k, q/k}.

This would mean that:

It would also mean that:

And if the above is true:

**Coded Data Proofs (1):**

Say y=kx, and also that: x={p, q}, y={kp, kq}.

This would mean that:

Therefore, when y=kx:

What we’d also be able to conclude is that:

When considering the above, we can deduce that:

Therefore, when y=kx:

In this post, I’ll be proving that:

First of all, let’s say that:

Whereby, .

And also that:

Whereby, .

If this is the case, this means that:

Therefore:

Hence we’ve proven that:

In this post I’ll be showing you **how to derive the formula for the area of an equilateral triangle –** in easy steps. In order to understand this derivation properly, you need to be familiar with **Pythagoras’ theorem** and also a few **algebraic rules**. What you’ll also need is **a ruler**, **pair of compasses, a pencil **and **a sheet of paper.**

Ready? Let me begin…

Step 1: Put a point on a blank sheet of paper and name it A.

Step 2: Put the needle of your compass on the point A and draw a circle around it.

Step 3: Add a point B to this circle, on its edge.

Step 4: Put the needle of your compass on the point B and your pencil on the point A.

Step 5: Draw another circle with a radius the length AB.

Step 6: Now add a few extra points to your drawing. Call these points C and D.

Step 7: Connect the points A, B and C forming a triangle.

Step 8: Draw a line going through the points C and D.

Step 9: Where the line going through C and D intersects the triangle, place the point E.

Step 10: Now look at your latest work very carefully… What you will notice is that the lengths AB, AC and BC are all equal to one another. This is because both the circles you drew – are exactly the same size. They each have radiuses equal in proportion. In simple terms, AB=AC=BC.

What you have to do now is name these lengths (r) for radius. Here’s the thing though, because the line going through C and D splits the triangle (equilateral, as each of its sides has the same length) down its middle, the length AE is equal to 1/2 x r, and similarly the length BE is equal to 1/2 x r. Together, the length AE + BE = AB = r.

Step 11: Remember that I said that the line going through C and D splits the triangle down its middle. Also, notice that this exact line is perpendicular to the length AB. Now, because of this, at the point E, you’ve got two right angles. Name these two right angles big R.

[Knowing that these two angles are equal to 90 degrees is vital – because you’ll be able to use Pythagoras’ theorem to find the length CE.]

Step 12: Find the length CE using **Pythagoras’ theorem**, Adjacent² + Opposite² = Hypotenuse². You will need this length to find the area of the equilateral triangle you’ve produced.

** Algebraic skills will be required from this point…*

Step 13: Derive the formula for the area (A) of the equilateral triangle. Remember that the area of a **right angled** triangle is **L x W x 1/2**.

Presto!!! Keep in mind that you can transform the variable (r) into any variable you wish. This variable (r) is the length of each side of the equilateral triangle you were working with. The formula you’ve derived can be used to find the area of any equilateral triangle.

In this post I’ll be demonstrating how you can prove that **Thales’ Theorem** is true. To follow the steps in this post (11 in total), what you will require is a *ruler, pair of compasses and a pencil*.

*Thales’ Theorem is as follows:*

*Because AC is the diameter of the circle you drew, the angle at the point D (α+β) must be equal to 90 degrees. In more specific and general terms, if you have the points A, C and D lying on a circle – and the line AC is in fact the diameter of this circle – then the angle at point D (α+β) must be a right angle.*

**Proof (which must be derived using the diagram you’ve created):**

All angles within a triangle (in 2 space) must add up to 180 degrees.

Mathematically, this means that:

And as a result, Thales’ theorem **must be true**. The angle **α+β** is the angle at point **D**.

**You will need a pair of compasses, a ruler, pen and pencil to formulate this proof.*

How would you go about proving that an isosceles triangle has two angles (below its apex) equal to one another?

Well, first of all – let’s start off by drawing a circle…

Now… We can tell that the circle we’ve just drawn has a centre (point at the centre). Next, what we have to do is add a couple of points to the edge of this circle. Like this…

Let’s name all these points A, B and C…

Now, let’s connect these points together with a few lines – to create an isosceles triangle ABC…

Ok… So far, so good… What you will need to do now is – place the needle of your compass on the point C and your pencil on the point B, like this…

Now spin your compass – and create an arc…

Next, get the needle of your compass and place it on the point B and put your pencil on the point C…

Draw another arc, like this…

Where the two arcs you’ve just drawn intersect, create a point… Call this point D…

Now, draw a line going through the points A and D. Call this line L. Line L will be perpendicular to the line BC…

Where the line L intersects the line BC, create a point E…

Now, it turns out, within the isosceles triangle ABC, we’ve created two right angles… This is because the line L is perpendicular to the line BC. Remember that the line L cuts the isosceles triangle down its centre. Let’s name these right angles big R…

If you look at the diagram above carefully, what you will notice is that the radius of the circle is equal in length to the line AB and also the line AC. Let’s name the lines AB and AC… We’ll call them r.

Let’s also name the line BC… We’ll call it x. This means that the line BE is equal to half of x, and because of this, the line CE must also be equal to half of x…

Finally (I know you must be tired of drawing), let’s call the angle ABC alpha and the angle ACB beta…

With our diagram complete, we can now prove that alpha and beta are equivalent to each other.

**You will need to know a bit of trigonometry to pass this point. SOH CAH TOA rules to be precise.*

It turns out that:

And also:

This means that:

Hence, we’ve proven that an isosceles triangle has two angles (below its apex) equal to one another.

How can we prove that opposite angles (when two lines intersect) are in fact equal to one another?

Well, first of all – let’s draw a circle…

We know that in a full circle, there are 360 degrees. This is an indisputable fact. Now, what happens if we split this circle in two with a straight line (going through its centre)?

Well, each half of the circle (top and bottom) – will now contain 180 degrees. We know this because:

Ok, so far so good… Now, let’s draw another line through the circle (going through its centre) which intersects the first line we have drawn…

As we can see, because we have done this, we now have 4 different angles. Let’s name the two angles which are situated in the top half of the circle **α** and **β**…

Earlier in this demonstration, we remarked that the top half of the circle (when it was split in two) contained 180 degrees. Mathematically and logically speaking, as this is the case, we must say that:

Great, now let’s name the angles in the bottom half of the circle **x** and **y**…

It follows, because the angles in the top half of the circle add up to 180 degrees, we must deduce that:

So, it turns out we now have two useful equations:

Do we have enough to form our proof though? Unfortunately, not quite… We have to look at our most recent figure again, but this time from a different perspective…

You see, there are different top halves and bottom halves…

- There exists top halves
**α+β**and also…**β+y** - There exists bottom halves
**x+y**but also**α+x**

You may ask, why is this important? Well, here’s what’s crucial:

And now we have 4 different equations, 3 of which – will help us finally complete our proof.

Here’s why we need these equations…

**α+β** and **α+x** are equivalent (180 degrees), so we can deduce that:

**Subtract α from both sides of the equation.*

**α+β** and **β****+y** are equivalent (180 degrees), so we can deduce that:

**Subtract β from both sides of the equation.*

Hence, we’ve proven that: **Opposite angles (when two lines intersect) are equal to one another**.

** β=x** and **α=y**:

In this post, I’ll be demonstrating how you can **quickly double the area of a square** using a simple geometrical trick.

Let’s say you have an ordinary square, like the one below…

Firstly, what you have to do is name the area of this square “A”…

Then, what you do next is divide this square (diagonally) into 4 equal parts…

After you have done this, you then name each part of this square “1/4 x A”…

Notice now, that to double the area of this square, all you have to do, is double the number of the 1/4 x A right angled triangles which currently exist – then configure them – like this…

As you can see, you’ve now got eight of these 1/4 x A right angled triangles neatly configured…

Not only are you left with a new square, double the size of your original square (follow the lines on the outside of the shape), but a handy equation, which proves that you doubled the area of the square you started off with…

How about that? 🙂

If you’d like to **derive the formula for a circle** from **absolute scratch**, then your best option would be to draw a diagram such as the one below:

If you look at this diagram carefully, what you will notice is:

- A circle exists and each point on this circle has the coordinate (x, y).
- The centre of the circle can be found at (a, b).
- The circle has a radius ‘r’.
- The right angled triangles in the diagram each have an adjacent length, opposite length and hypotenuse (r).

Once you’ve prepared a similar diagram, your next aim should be to turn your attention towards the right angled triangles which exist within the circle. You should also think about the many different right angled triangles which could fit within the circle provided they emanate from the centre point (a, b).

The reason I’ve mentioned these right angled triangles is because according to **Pythagoras’ theorem**, when you have a right angled triangle – its ** adjacent length squared** plus its

**Adjacent²+Opposite²=Hypotenuse²**

Now, in this case – the * adjacent lengths* of the right angled triangles which can fit within the circle on the diagram can be described using the expression:

or

The * opposite lengths* can be described using the expression:

or

Also, very interestingly:

- Each of the right angled triangles you can think of has a
‘r’.**hypotenuse**

When you **combine all the information above**, what you get is a neat formula which looks like this:

And it turns out… This is the formula for a circle on the x, y plane, whereby, (a, b) is the centre of the circle and ‘r’ is the length of its radius. How spectacular is that? 🙂