Category Archives: Visualising Mathematics

Deriving the formula for an ellipse

In this post, I’ll be demonstrating how one can derive the formula for an ellipse from absolute scratch.

To derive the formula for an ellipse, what we must first do is create a diagram like the one below.

Ellipse diagram

 

 

 

 

 

 

** Click on the image above to see it in full size.

Now, the first thing we’ve got to acknowledge here is that:

{ D }_{ 1 }+{ D }_{ 2 }=2a

What we’re basically saying is that D_1 + D_2 is equal to the length from -a to a in the diagram above.

This formula can be understood by watching the video below…

These photographs can also help the formula sink into your mind…

Ellipse Image 1:

Ellipse Image 1

 

 

 

 

 

 

Ellipse Image 2:

Ellipse Image 2

 

 

 

 

 

 

Now, look at the diagram at the top of this page once again…

What you will notice is that:

{ \left( c+x \right) }^{ 2 }+{ y }^{ 2 }={ D }_{ 1 }^{ 2 }\\ \\ \therefore \quad { D }_{ 1 }^{ 2 }={ c }^{ 2 }+2cx+{ x }^{ 2 }+{ y }^{ 2 }\\ \\ \therefore \quad { D }_{ 1 }=\sqrt { { c }^{ 2 }+2cx+{ x }^{ 2 }+{ y }^{ 2 } } \\ \\ { \left( c-x \right) }^{ 2 }+{ y }^{ 2 }={ D }_{ 2 }^{ 2 }\\ \\ \therefore \quad { D }_{ 2 }^{ 2 }={ c }^{ 2 }-2cx+{ x }^{ 2 }+{ y }^{ 2 }\\ \\ \therefore \quad { D }_{ 2 }=\sqrt { { c }^{ 2 }-2cx+{ x }^{ 2 }+{ y }^{ 2 } }

If this is the case, we can say that:

part of ellipse workings

 

 

 

 

 

 

 

** Click on the image of the workings to see it in full size.

Alright, so far so good… Now, it turns out – if you look at the diagram at the top of this page carefully, you will discover that:

{ b }^{ 2 }+{ c }^{ 2 }={ a }^{ 2 }\\ \\ \therefore \quad { c }^{ 2 }={ a }^{ 2 }-{ b }^{ 2 }

And this ultimately means that:

{ a }^{ 4 }+\left( { a }^{ 2 }-{ b }^{ 2 } \right) { x }^{ 2 }={ a }^{ 2 }\left( { a }^{ 2 }-{ b }^{ 2 } \right) +{ a }^{ 2 }{ x }^{ 2 }+{ a }^{ 2 }{ y }^{ 2 }\\ \\ \therefore \quad { a }^{ 4 }+{ a }^{ 2 }{ x }^{ 2 }-{ b }^{ 2 }{ x }^{ 2 }={ a }^{ 4 }-{ a }^{ 2 }{ b }^{ 2 }+{ a }^{ 2 }{ x }^{ 2 }+{ a }^{ 2 }{ y }^{ 2 }\\ \\ -{ b }^{ 2 }{ x }^{ 2 }=-{ a }^{ 2 }{ b }^{ 2 }+{ a }^{ 2 }{ y }^{ 2 }\\ \\ { b }^{ 2 }{ x }^{ 2 }+{ a }^{ 2 }{ y }^{ 2 }={ a }^{ 2 }{ b }^{ 2 }\\ \\ \frac { { b }^{ 2 }{ x }^{ 2 } }{ { a }^{ 2 }{ b }^{ 2 } } +\frac { { a }^{ 2 }{ y }^{ 2 } }{ { a }^{ 2 }{ b }^{ 2 } } =\frac { { a }^{ 2 }{ b }^{ 2 } }{ { a }^{ 2 }{ b }^{ 2 } } \\ \\ \frac { { x }^{ 2 } }{ { a }^{ 2 } } +\frac { { y }^{ 2 } }{ { b }^{ 2 } } =1\\ \\ { \left( \frac { x }{ a } \right) }^{ 2 }+{ \left( \frac { y }{ b } \right) }^{ 2 }=1

The formula you see just above is the formula for an ellipse. You’ve derived it from scratch!!

Mathematical Art Work, including Isometric Drawings (Visualising Maths)

Over the past couple of months I’ve been drawing mathematical figures and logos. Quite recently I discovered that art can help me understand complex mathematics a little better, especially three dimensional problems. It turns out that infinitely many complex sketches can emerge out of isometric fields which can be created using pencils, rulers and compasses. Isometric fields are used by engineers and architects who model three dimensional structures. Isometric fields allow you to represent cubes and various different 3 dimensional shapes on 2 dimensional surfaces in quite spectacular fashion. Here are some pieces of work I produced using such fields…

tiago_isometric

Love they neighbour

Follow Mathematics Videos & Proofs’s board Mathematical Art & Beauty on Pinterest.

If you’d like to see more work that I’ve been able to produce, please visit my mathematics Pinterest page. I’ve thoroughly enjoyed drawing optical illusions and logos using isometric paper, and I could indeed start designing isometric logos and pieces of text to make some extra money whilst studying mathematics. It’s not that often you bump into sound business ideas, especially business ideas related to both mathematics and art.

If you are a mathematics student but have never used isometric paper before, I’d recommend downloading isometric paper via the links below and producing mathematical sketches. Isometric paper could potentially be very useful to those interested in learning more about vector geometry and extra dimensions.

Download Isometric Paper:

Link 1 – http://www.printablepaper.net/category/isometric_graph

Link 2 – http://www.worksheetworks.com/miscellanea/graph-paper/isometric.html

And by the way, thanks for stopping by. Enjoy your new year celebrations! 🙂

Video Updates: 01.07.2015

This week’s updates are as follows:

You can learn how to draw a tesseract using the video below. This depiction of a tesseract can be found in the book ‘The Visual Guide To Extra Dimensions (Volume 1) – Visualizing the Fourth Dimension, Higher Dimensional Polytopes and Curved Hypersurfaces’ written by Chris McMullen Ph.D, a particle physicist based in the United States.

This next video contains a few perspective drawings and an animation of a sphere passing through a sheet of paper. It was made to demonstrate that perhaps the universe we inhabit is a construct of some kind.

You can explore non-euclidean space, or more specifically – a 3 dimensional sphere with lines passing through it both vertically and horizontally…

For those interested in seeing basic shapes rotate, you can watch a line, square and cube rotate about 360 degrees and additionally; a point, circle and sphere spin around an axis below…

Now, most of these videos were made in order to help me visualise a few concepts brought to light in Chris McMullen’s book. I hope you do get to enjoy watching these new clips. Feedback is appreciated as always. 🙂