How to find a neat version of y when you have the equation of an ellipse

So, you have the equation of the ellipse but you need to completely isolate y. How would you go about doing this? Well, here is a fantastic example…

{ \left( \frac { x }{ a } \right) }^{ 2 }+{ \left( \frac { y }{ b } \right) }^{ 2 }=1\\ \\ \therefore \quad { \left( \frac { y }{ b } \right) }^{ 2 }=1-{ \left( \frac { x }{ a } \right) }^{ 2 }\\ \\ \therefore \quad \frac { { y }^{ 2 } }{ { b }^{ 2 } } =1-\frac { { x }^{ 2 } }{ { a }^{ 2 } } \\ \\ \therefore \quad { y }^{ 2 }={ b }^{ 2 }-\frac { { { b }^{ 2 }x }^{ 2 } }{ { a }^{ 2 } } \\ \\ \therefore \quad { y }^{ 2 }=\frac { { a }^{ 2 }{ b }^{ 2 } }{ { a }^{ 2 } } -\frac { { b }^{ 2 }{ x }^{ 2 } }{ { a }^{ 2 } } \\ \\ \therefore \quad { y }^{ 2 }=\frac { { a }^{ 2 }{ b }^{ 2 }-{ b }^{ 2 }{ x }^{ 2 } }{ { a }^{ 2 } } \\ \\ \therefore \quad { y }^{ 2 }=\frac { { b }^{ 2 }\left( { a }^{ 2 }-{ x }^{ 2 } \right) }{ { a }^{ 2 } } \\ \\ \therefore \quad { y }^{ 2 }=\frac { { b }^{ 2 } }{ { a }^{ 2 } } \cdot \left( { a }^{ 2 }-{ x }^{ 2 } \right) \\ \\ \therefore \quad y=\sqrt { \frac { { b }^{ 2 } }{ { a }^{ 2 } } } \cdot \sqrt { { a }^{ 2 }-{ x }^{ 2 } } \\ \\ \therefore \quad y=\frac { b }{ a } \cdot \sqrt { { a }^{ 2 }-{ x }^{ 2 } }

This will come in handy if you’re trying to derive the area of an ellipse from absolute scratch.

Thanks for reading! 🙂

Other posts you may be interested in...