# Properties of C squared, Pythagorean Theorem

In this post, I’ll be writing about some peculiar properties of C squared in Pythagoras’ theorem.

Look at this diagram very carefully…

*What are the weird properties of C^2..? It turns out that A1=A2 and A3=A4. A2 + A4 = C^2.

It turns out out that area A1 is equal to area A2, and that area A3 is equal to area A4:

A1 = A2

A3 = A4

This can be proven because:

1. ${ A }^{ 2 }+{ B }^{ 2 }={ C }^{ 2 }$
2. ${ x }^{ 2 }+{ D }^{ 2 }={ B }^{ 2 }$
3. ${ \left( C-x \right) }^{ 2 }+{ D }^{ 2 }={ A }^{ 2 }$

Now, due to the above:

${ D }^{ 2 }={ B }^{ 2 }-{ x }^{ 2 }\\ \\ { D }^{ 2 }={ A }^{ 2 }-{ \left( C-x \right) }^{ 2 }\\ \\ \therefore \quad { B }^{ 2 }-{ x }^{ 2 }={ A }^{ 2 }-{ \left( C-x \right) }^{ 2 }\\ \\ { B }^{ 2 }-{ x }^{ 2 }={ A }^{ 2 }-\left\{ { C }^{ 2 }-2Cx+{ x }^{ 2 } \right\} \\ \\ { B }^{ 2 }-{ x }^{ 2 }={ A }^{ 2 }-{ C }^{ 2 }+2Cx-{ x }^{ 2 }\\ \\ { B }^{ 2 }={ A }^{ 2 }-{ C }^{ 2 }+2Cx\\ \\ { B }^{ 2 }={ A }^{ 2 }-\left\{ { A }^{ 2 }+{ B }^{ 2 } \right\} +2Cx\\ \\ { B }^{ 2 }={ A }^{ 2 }-{ A }^{ 2 }-{ B }^{ 2 }+2Cx\\ \\ { B }^{ 2 }=-{ B }^{ 2 }+2Cx\\ \\ 2{ B }^{ 2 }=2Cx\\ \\ \therefore \quad { B }^{ 2 }=Cx\\ \\$

But… B^2 is actually the area A1 and Cx is the area A2, which means that A1=A2.

Now, if B^2=Cx, this means that:

${ A }^{ 2 }+Cx={ C }^{ 2 }\\ \\ \therefore \quad { A }^{ 2 }={ C }^{ 2 }-Cx\\ \\ { A }^{ 2 }=C\left( C-x \right) \\ \\$

However, A^2 is equal to the area A3, and C(C-x) is equal to the area A4 – which means that A3=A4. Hence, we’ve proven that:

A1=A2

A3=A4

Related:

2 ways to derive Pythagoras’ equation from scratch