How to prove that sin(A-B)=sin(A)cos(B)-cos(A)sin(B) geometrically

In this post I’ll be demonstrating how one can prove that sin(A-B)=sin(A)cos(B)-cos(A)sin(B) geometrically…

First of all, let me show you this diagram…

sin(a-b) proof

sin(A-B)=sin(A)cos(B)-cos(A)sin(B) proof

*If you click on the diagram, you will be able to see its full size version.


IMPORTANT FACTS ABOUT THE DIAGRAM

Now, to begin with, I will have to write about some of the properties related to the diagram…

Property 1:

Angle B + (A – B) = B + A – B = A

Therefore, angle POR = A.

Property 2:

Angle OPS = 90 degrees

Property 3:

Length OS = 1

Also note:

All angles within a triangle on a flat plane should add up to 180 degrees. If you understand this rule, you will be able to discover why the angles shown on the diagram are correct. Angles which are 90 degrees are shown on the diagram too.


PROVING THAT SIN(A-B)=SIN(A)COS(B)-COS(A)SIN(B)

Since I’ve noted down some of the important properties related to the diagram, I can now focus on demonstrating why the formula above is true. I will demonstrate why the formula above is true using mathematics and the SOH CAH TOA rule…

\sin { \left( A-B \right)  } =\frac { O }{ H } =\frac { ST }{ 1 } =ST

But it turns out that…

ST=PR-PQ

Because:

QR=ST

Now, what is PR and what is PQ?

\sin { \left( B \right)  } =\frac { O }{ H } =\frac { PS }{ 1 } =PS\\ \\ \cos { \left( B \right)  } =\frac { A }{ H } =\frac { OP }{ 1 } =OP\\ \\ \sin { \left( A \right)  } =\frac { O }{ H } =\frac { PR }{ \cos { \left( B \right)  }  } \quad \\ \\ \therefore \quad \sin { \left( A \right)  } \cos { \left( B \right)  } =PR\\ \\ \cos { \left( A \right)  } =\frac { A }{ H } =\frac { PQ }{ \sin { \left( B \right)  }  } \\ \\ \therefore \quad \cos { \left( A \right)  } \sin { \left( B \right)  } =PQ

And finally, to sum it all up:

ST=PR-PQ\\ \\ \therefore \quad \sin { \left( A-B \right) =\sin { \left( A \right)  } \cos { \left( B \right)  } -\cos { \left( A \right)  } \sin { \left( B \right)  }  } 


Need a better explanation? Watch this video…


Related Videos:


Related posts:

Simple But Elegant Way To Prove That sin(A+B)=sinAcosB+cosAsinB (Edexcel Proof Simplified)

Deriving the formula for an ellipse

In this post, I’ll be demonstrating how one can derive the formula for an ellipse from absolute scratch.

To derive the formula for an ellipse, what we must first do is create a diagram like the one below.

Ellipse diagram

 

 

 

 

 

 

** Click on the image above to see it in full size.

Now, the first thing we’ve got to acknowledge here is that:

{ D }_{ 1 }+{ D }_{ 2 }=2a

What we’re basically saying is that D_1 + D_2 is equal to the length from -a to a in the diagram above.

This formula can be understood by watching the video below…

These photographs can also help the formula sink into your mind…

Ellipse Image 1:

Ellipse Image 1

 

 

 

 

 

 

Ellipse Image 2:

Ellipse Image 2

 

 

 

 

 

 

Now, look at the diagram at the top of this page once again…

What you will notice is that:

{ \left( c+x \right) }^{ 2 }+{ y }^{ 2 }={ D }_{ 1 }^{ 2 }\\ \\ \therefore \quad { D }_{ 1 }^{ 2 }={ c }^{ 2 }+2cx+{ x }^{ 2 }+{ y }^{ 2 }\\ \\ \therefore \quad { D }_{ 1 }=\sqrt { { c }^{ 2 }+2cx+{ x }^{ 2 }+{ y }^{ 2 } } \\ \\ { \left( c-x \right) }^{ 2 }+{ y }^{ 2 }={ D }_{ 2 }^{ 2 }\\ \\ \therefore \quad { D }_{ 2 }^{ 2 }={ c }^{ 2 }-2cx+{ x }^{ 2 }+{ y }^{ 2 }\\ \\ \therefore \quad { D }_{ 2 }=\sqrt { { c }^{ 2 }-2cx+{ x }^{ 2 }+{ y }^{ 2 } }

If this is the case, we can say that:

part of ellipse workings

 

 

 

 

 

 

 

** Click on the image of the workings to see it in full size.

Alright, so far so good… Now, it turns out – if you look at the diagram at the top of this page carefully, you will discover that:

{ b }^{ 2 }+{ c }^{ 2 }={ a }^{ 2 }\\ \\ \therefore \quad { c }^{ 2 }={ a }^{ 2 }-{ b }^{ 2 }

And this ultimately means that:

{ a }^{ 4 }+\left( { a }^{ 2 }-{ b }^{ 2 } \right) { x }^{ 2 }={ a }^{ 2 }\left( { a }^{ 2 }-{ b }^{ 2 } \right) +{ a }^{ 2 }{ x }^{ 2 }+{ a }^{ 2 }{ y }^{ 2 }\\ \\ \therefore \quad { a }^{ 4 }+{ a }^{ 2 }{ x }^{ 2 }-{ b }^{ 2 }{ x }^{ 2 }={ a }^{ 4 }-{ a }^{ 2 }{ b }^{ 2 }+{ a }^{ 2 }{ x }^{ 2 }+{ a }^{ 2 }{ y }^{ 2 }\\ \\ -{ b }^{ 2 }{ x }^{ 2 }=-{ a }^{ 2 }{ b }^{ 2 }+{ a }^{ 2 }{ y }^{ 2 }\\ \\ { b }^{ 2 }{ x }^{ 2 }+{ a }^{ 2 }{ y }^{ 2 }={ a }^{ 2 }{ b }^{ 2 }\\ \\ \frac { { b }^{ 2 }{ x }^{ 2 } }{ { a }^{ 2 }{ b }^{ 2 } } +\frac { { a }^{ 2 }{ y }^{ 2 } }{ { a }^{ 2 }{ b }^{ 2 } } =\frac { { a }^{ 2 }{ b }^{ 2 } }{ { a }^{ 2 }{ b }^{ 2 } } \\ \\ \frac { { x }^{ 2 } }{ { a }^{ 2 } } +\frac { { y }^{ 2 } }{ { b }^{ 2 } } =1\\ \\ { \left( \frac { x }{ a } \right) }^{ 2 }+{ \left( \frac { y }{ b } \right) }^{ 2 }=1

The formula you see just above is the formula for an ellipse. You’ve derived it from scratch!!

Finding the formulas for areas of triangles

In this post I’ll be demonstrating how one can derive the three formulas which can be used to find the areas of triangles.

These formulas are in fact:

A=\frac { 1 }{ 2 } bc\cdot \sin { \left( A \right) } =\frac { 1 }{ 2 } ac\cdot \sin { \left( B \right) =\frac { 1 }{ 2 } } ab\cdot \sin { \left( C \right) }

To begin with, let’s start by looking at the diagram below:

Triangle Diagram

Now, if you look at the diagram carefully – you will notice that the area of the triangle is:

A=\frac { x\cdot CN }{ 2 } +\frac { \left( c-x \right) \cdot CN }{ 2 }

This can be simplified into:

\frac { x\cdot CN }{ 2 } +\frac { \left( c-x \right) \cdot CN }{ 2 } \\ \\ =\frac { x\cdot CN+\left( c-x \right) \cdot CN }{ 2 } \\ \\ =\frac { CN\left\{ x+\left( c-x \right) \right\} }{ 2 } \\ \\ =\frac { CN\cdot c }{ 2 }

Because of SOH CAH TOA, what we can also say is that:

\sin { \left( A \right) } =\frac { O }{ H } =\frac { CN }{ b } \\ \\ \therefore \quad b\cdot \sin { \left( A \right) } =CN\\ \\ \sin { \left( B \right) =\frac { O }{ H } } =\frac { CN }{ a } \\ \\ \therefore \quad a\cdot \sin { \left( B \right) } =CN

Now because:

A=\frac { CN\cdot c }{ 2 }

This ultimately means that:

A=\frac { 1 }{ 2 } bc\cdot \sin { \left( A \right) } \\ \\ A=\frac { 1 }{ 2 } ac\cdot \sin { \left( B \right) } \\ \\ \therefore \quad A=\frac { 1 }{ 2 } bc\cdot \sin { \left( A \right) =\frac { 1 }{ 2 } ac } \cdot \sin { \left( B \right) }

Alright, so far so good… Now we must put the icing on the cake and attach the final piece of the jigsaw puzzle to the formula above. In order to find the three equations which can be used to find the areas of triangles, we must now discover the expression for sin(C). We can discover its expression by first saying that:

C=\left( 90-A \right) +\left( 90-B \right) \\ \\ =90-A+90-B\\ \\ =180-A-B\\ \\ =180-\left( A+B \right) \\ \\ \therefore \quad \sin { \left( C \right) } =\sin { \left( 180-\left( A+B \right) \right) }

And if we use the trigonometric identity below:

\sin { \left( \alpha -\beta \right) } =\sin { \left( \alpha \right) \cdot \cos { { \left( \beta \right) } } -\cos { \left( \alpha \right) \cdot \sin { \left( \beta \right) } } }

We will reach the conclusion:

\sin { \left( 180-\left( A+B \right) \right) } =\sin { \left( 180 \right) \cdot \cos { \left( A+B \right) -\cos { \left( 180 \right) \cdot \sin { \left( A+B \right) } } } } 

But because:

\sin { \left( 180 \right) =0 } ,\quad \cos { \left( 180 \right) =-1 } \\ \\ \sin { \left( 180-\left( A+B \right) \right) =-\left( -1 \right) \cdot \sin { \left( A+B \right) } } \\ \\ \therefore \quad \sin { \left( C \right) =\sin { \left( A+B \right) } }

Now, sin(A+B) as a trigonometric identity, is:

\sin { \left( A+B \right) =\sin { \left( A \right) \cdot \cos { \left( B \right) +\cos { \left( A \right) \cdot \sin { \left( B \right) } } } } }

And, thanks to SOH CAH TOA…

\sin { \left( A+B \right) =\sin { \left( C \right) } } \\ \\ \sin { \left( A \right) =\frac { CN }{ b } } \\ \\ \cos { \left( B \right) =\frac { A }{ H } } =\frac { \left( c-x \right) }{ a } \\ \\ \cos { \left( A \right) =\frac { A }{ H } =\frac { x }{ b } } \\ \\ \sin { \left( B \right) =\frac { CN }{ a } }

Which means that…

\sin { \left( C \right) =\frac { CN }{ b } \cdot \frac { \left( c-x \right) }{ a } +\frac { x }{ b } \cdot \frac { CN }{ a } } \\ \\ =\frac { CN\left( c-x \right) }{ ab } +\frac { CN\cdot x }{ ab } \\ \\ =\frac { CN\left( c-x \right) +CN\cdot x }{ ab } \\ \\ =\frac { CN\left\{ \left( c-x \right) +x \right\} }{ ab } \\ \\ =\frac { CN\cdot c }{ ab } \\ \\ \therefore \quad ab\cdot \sin { \left( C \right) =CN\cdot c } \\ \\ \therefore \quad \frac { 1 }{ 2 } ab\cdot \sin { \left( C \right) =\frac { CN\cdot c }{ 2 } =A }

As this is the case, we can conclude that:

A=\frac { 1 }{ 2 } bc\cdot \sin { \left( A \right) } =\frac { 1 }{ 2 } ac\cdot \sin { \left( B \right) =\frac { 1 }{ 2 } } ab\cdot \sin { \left( C \right) }

How to derive the formula for the area of an equilateral triangle

In this post I’ll be showing you how to derive the formula for the area of an equilateral triangle – in easy steps. In order to understand this derivation properly, you need to be familiar with Pythagoras’ theorem and also a few algebraic rules. What you’ll also need is a ruler, pair of compasses, a pencil and a sheet of paper.

Ready? Let me begin…

Step 1: Put a point on a blank sheet of paper and name it A.

Point A

Step 2: Put the needle of your compass on the point A and draw a circle around it.

Circle...

Step 3: Add a point B to this circle, on its edge.

Point B added...

Step 4: Put the needle of your compass on the point B and your pencil on the point A.

Step 4...

Step 5: Draw another circle with a radius the length AB.

Another circle...

Step 6: Now add a few extra points to your drawing. Call these points C and D.

Points C and D added to drawing...

Step 7: Connect the points A, B and C forming a triangle.

Points A, B and C connected.

Step 8: Draw a line going through the points C and D.

Line through points C and D.

Step 9: Where the line going through C and D intersects the triangle, place the point E.

Point E added...

Step 10: Now look at your latest work very carefully… What you will notice is that the lengths AB, AC and BC are all equal to one another. This is because both the circles you drew – are exactly the same size. They each have radiuses equal in proportion. In simple terms, AB=AC=BC.

What you have to do now is name these lengths (r) for radius. Here’s the thing though, because the line going through C and D splits the triangle (equilateral, as each of its sides has the same length) down its middle, the length AE is equal to 1/2 x r, and similarly the length BE is equal to 1/2 x r. Together, the length AE + BE = AB = r.

Step 11: Remember that I said that the line going through C and D splits the triangle down its middle. Also, notice that this exact line is perpendicular to the length AB. Now, because of this, at the point E, you’ve got two right angles. Name these two right angles big R.

[Knowing that these two angles are equal to 90 degrees is vital – because you’ll be able to use Pythagoras’ theorem to find the length CE.]

Step 12: Find the length CE using Pythagoras’ theorem, Adjacent² + Opposite² = Hypotenuse². You will need this length to find the area of the equilateral triangle you’ve produced.

*Algebraic skills will be required from this point…

{ AE }^{ 2 }+{ CE }^{ 2 }={ AC }^{ 2 }\\ \\ \Rightarrow \quad { \left( \frac { 1 }{ 2 } r \right)  }^{ 2 }+{ CE }^{ 2 }={ r }^{ 2 }\\ \\ \Rightarrow \quad { CE }^{ 2 }={ r }^{ 2 }-{ \left( \frac { 1 }{ 2 } r \right)  }^{ 2 }\\ \\ \Rightarrow \quad { CE }^{ 2 }=\frac { 4r^{ 2 } }{ 4 } -\frac { { r }^{ 2 } }{ 4 } \\ \\ \Rightarrow \quad { CE }^{ 2 }=\frac { 3{ r }^{ 2 } }{ 4 } \\ \\ \Rightarrow \quad CE=\sqrt { \frac { 3{ r }^{ 2 } }{ 4 }  } \\ \\ \therefore \quad CE=\frac { r\sqrt { 3 }  }{ 2 } 

Length CE found...

Step 13: Derive the formula for the area (A) of the equilateral triangle. Remember that the area of a right angled triangle is L x W x 1/2.

A=\frac { 1 }{ 2 } r\cdot \frac { r\sqrt { 3 }  }{ 2 } \cdot \frac { 1 }{ 2 } +\frac { 1 }{ 2 } r\cdot \frac { r\sqrt { 3 }  }{ 2 } \cdot \frac { 1 }{ 2 } \\ \\ =\frac { 1 }{ 8 } { r }^{ 2 }\sqrt { 3 } +\frac { 1 }{ 8 } { r }^{ 2 }\sqrt { 3 } \\ \\ =2\cdot \frac { 1 }{ 8 } { r }^{ 2 }\sqrt { 3 } \\ \\ =\frac { 1 }{ 4 } { r }^{ 2 }\sqrt { 3 } 

Presto!!! Keep in mind that you can transform the variable (r) into any variable you wish. This variable (r) is the length of each side of the equilateral triangle you were working with. The formula you’ve derived can be used to find the area of any equilateral triangle.

Proof: Thales’ Theorem

In this post I’ll be demonstrating how you can prove that Thales’ Theorem is true. To follow the steps in this post (11 in total), what you will require is a ruler, pair of compasses and a pencil.

Step 1: Draw a random line on a sheet of paper.

Random line....

Step 2: Place your compass needle on this line, and form a circle.

A circle...

Step 3: Add 4 points to your drawing, as shown below…

Add 4 points to your drawing....

Step 4: Name the points A, B, C and D as shown…

Points A, B, C and D

Step 5: Connect the points A, B and D together to form an isosceles triangle

Points A, B and D connected.

Step 6: Name the lines AB and BD the radius (r)…

Label the radiuses...

Step 7: Since the lines AB and BD are equal to one another, it follows that the angles ∠BAD and ∠BDA are equivalent. This is because the angles below the apex of an isosceles triangle are equal. You must name these angles alpha (α).

Label alpha angles...

Step 8: Now connect the points BC and CD together to form another isosceles triangle…

Another isosceles triangle...

Step 9: The line BC is equal to r… Now label the line BC…

Label the line BC...

Step 10: Because the line BC and BD are both equal to r, the triangle BCD is an isosceles triangle. This means that the angles ∠BCD and ∠BDC must both be equivalent. Call these angles beta (β).

Label the angles beta...

Step 11: Prove that the angle at point D is equal to 90 degrees.

Thales’ Theorem is as follows:

Because AC is the diameter of the circle you drew, the angle at the point D (α+β) must be equal to 90 degrees. In more specific and general terms, if you have the points A, C and D lying on a circle – and the line AC is in fact the diameter of this circle – then the angle at point D (α+β) must be a right angle.

Proof (which must be derived using the diagram you’ve created):

Diagram.

All angles within a triangle (in 2 space) must add up to 180 degrees.

Mathematically, this means that:

\alpha +\alpha +\beta +\beta =180\\ \\ \Rightarrow \quad 2\alpha +2\beta =180\\ \\ \Rightarrow \quad 2\left( \alpha +\beta  \right) =180\\ \\ \Rightarrow \quad \frac { 2\left( \alpha +\beta  \right)  }{ 2 } =\frac { 180 }{ 2 } \\ \\ \therefore \quad \alpha +\beta =90

And as a result, Thales’ theorem must be true. The angle α+β is the angle at point D.

High quality mathematics videos and proofs for students